• 注册
    • 查看作者
    • 一种基于时间的定位算法在光纤振动传感系统中的应用

        1 引言

        

        光纤振动传感技术是近年来发展起来的一门崭新的技术, 具有良好的绝缘性和抗电磁干扰性;精度高, 传输距离远;耐腐蚀、体积小、重量轻、灵敏度高、响应速度快、可靠性好, 适合大型工程进行长期的安全监测。

        

        2 系统架构

        

        光纤振动监测工作原理:超窄线宽激光器输出的直流光信号经声光调制器调制后变为脉冲光信号, 脉冲光信号经过脉冲光放大器进行放大, 滤波后经环形器注入待测光缆, 基于光时域反射原理, 当光纤某个部位受到扰动时, 由于弹光效应该处的折射率将会发生变化, 从而导致该处光波相位的改变。由于干涉作用, 光相位的变化将引起后向瑞利散射光强度的改变, 通过对携带了扰动信息的后向瑞利散射光信号进行分析处理后, 即可实现对扰动和入侵的精确定位[1]。光纤振动传感应用于电力电缆防外入侵破坏监测中光缆可附着在电力电缆通道上进行布设, 若电缆是埋地方式铺设的, 光缆可在电缆上方或者两侧距离进行埋地伴行铺设。当有第三方外力如挖掘、打孔、顶管作业等, 使光缆产生振动, 系统报警, 同时定位。

        

        光纤振动传感系统结构如图1所示, 激光器发出线宽为3kHz的连续光信号, 中心波长为1550nm, 功率为30mw, 经过声光调制器 (AOM) 调制成脉冲宽度为200ns、重复频率为2kHz的脉冲信号。窄脉冲信号被光纤放大器 (EDFA) 放大后经过环形器注入传感光纤中, 用于在光纤中产生后向瑞利散射光。后向散射光被探测器 (Detector) 转变成电信号[2]。电信号经过采集卡上的放大、电滤波和采样, 数据分析处理模块后, 通过网线送入计算机进行进一步数据处理以及数据振动报警信息展示。

        

        3 系统程序设计

        

        3.1 采集卡运行设计

        

        传统的基于累加求差算法, 虽然可以通过累加从而降低由激光器相位噪声、相干衰落噪声、偏振衰落噪声以及电路的热噪声和散粒噪声等噪声, 但随着累加次数增大降低了系统的频率分辨率, 使得系统无法响应高频振动, 采集系统采用100MADC采集, 10ns采集一个点, 采集的信号相当于前向光前进1m返回的光信号。由于本系统中产生的光脉冲为200ns, 将光脉冲想象成在光纤中长度约为20m的光子群[3], 由光纤在不断向前发送, 同时产生反向的瑞利散射光。由于本设计中要求判断径向距离存在精度要求, 所以设定采集卡基本处理单元为5m, 通过时间轴累加, 将采集卡接收的数据按照时间顺序每5个点一组进行累加, 形成了返回信号的一个5m累加单元。通过累加可有效提高信噪比却又保障了系统的频率响应性能, 如图2。

        

        由于振动波在土壤中的速度与土壤环境有关, 距离太长的分析计算单元, 会引入前后距离介质不同干扰因素, 为保障算法设计的实际应用性, 在本算法模型中采用25米为一个基本分析单元, 即认为在25米的光缆埋设介质环境不会出现太大差距。

        

        3.2 采集卡计算原理设计

        

        采集卡输出通过方法A计算, 每1秒钟得出2000组的最大振幅值数据组Ri={ri1、ri2、ri3、…ri4、ri5、rik}, 采集卡通过实时求差, 计算Ri与Ri+1的差值, 并保留差值的最大值及最大值的时间序号, 最终在1s的采集处理分析周期中得出两个数组, 即最大差值数组M={M1、M2、M3、…M4、M5、Mk}和发生最大差值的时间序列组T={T1、T2、T3、…T4、T5、Tk}。

        

        公式计算:V为振动信号在土壤中的传播速度, 振动源距离振动传感光纤的径向距离y

        

        可以构建4个直角三角形, 分别为ΔABD, ΔACD, ΔADE, ΔADF, 并可列出4组公式, 分别计算y1, y2, y3, y4, 由于通过距离的累加系统距离分辨率最小为5m, 所以d的取值对于ΔABD和ΔADF为10m, 对于ΔACD和ΔADE为5m。

        

        由于Δt是通过读取相邻点的时间差, 所以会存在一定误差, 理论上得出的y值应该选取得到的4个y值中较为接近的两个点求平均值得出。

        

        V速度的选定:V为振动信号在土壤中的传播速度。由于振动在介质中传递的时候, 并没有受到周期激励干扰, 所以他的振动频率一直是他自己的固有频率, 所以频率不会变, 但是由于有介质, 介质有阻尼, 会对振动有衰减的作用[5]。由于不同介质土壤中的传播速度不同, 所以在系统安装后, 需要根据实际情况, 对现场埋设的光缆地区的情况进行大体的速度测算, 在已知光缆埋设深度y的地段通过测算可反推振动在该土壤中的传播速度。

        

        通过标定所得的不同地段的V值, 采用公式进行计算, 我们需要得出的是振动源距离光缆的径向距离, 径向距离又分为在埋地光缆的上方和在埋地光缆的侧方。由于埋地光缆埋深一般都在2~3米的范围内, 所以此类事件都可归类为距离光缆较近的振动事件。而侧方向事件多为顶管施工或侧方向钻探等事件, 这些事件存在由远及近, 由强到弱的变化趋势, 通过算法判定这种趋势, 在进入预警限制的范围内发出报警可有效判定危害事件并提前预防制止危害行为。

        

        4 现场数据采集分析

        

        4.1 数据采集

        

        现场搭建选取空旷场地, 开挖30米长、1米深的沟, 将光缆埋设于沟底, 并用夯土机将地面压实, 经过多次雨水沉积, 地下土质情况已经可以和其他未开挖区域接近。将测试主机设备放置在实验室, 如图所示小红旗沿线为光缆铺设路线, 在光缆正上方和垂直光缆距离5m和10m分别做三种距离的地面敲击实验。

        

        采集卡采样频率为100M, 可使信号位置分辨率达到1m, 重复频率设定为2k, 采集区段为5s一段。这样对于每个位置点5s可得到10000个时间点的数据。光缆正上方1米单个位置点振动波形图如图4, 可以看出在T1时刻在位置点23左右波形发生差分最大情况, 红色曲线显示最大差值时原始信号的状态。

        

        距离光缆5米单个位置点振动波形图, 可以看出在T1时刻波形发生差分最大情况, 红色曲线显示最大差值时原始信号的状态。

        

        距离10米距离单个位置点振动波形图, 通过相邻点时刻波形对比, 可以看出相同时间间隔内原始波形振动不如近距离剧烈。

        

        4.2 TDOA算法验证

        

        运用采集卡计算原理设计, 根据在光缆正上方距离光缆1米振动的数据, 选取第23点为振动源与光缆垂直位置最小点, 延第23点向前和向后查找第12点和第31点并记录其差分最大值发生的时刻下标, 第23点的Tm=1203, 第31点的Tm=1270, 第12点的Tm=1314 (一个位置点代表两米, 一个时间时刻代表0.5ms) 。图7中黄色曲线为振动发生时差分法得出的振动幅度信号, 红色曲线为差分法最大值发生时的时刻序列。

        

        通过前述的三角形公式, 可以得出振动传播速度V, 在1270-1203=67个时刻即33.5ms的时间内振动传播了约16米的距离, 则可计算出V=477.6m/s。同理, 在1314-1203=111个时刻即55.5ms的时间内振动传播了约22米的距离, 则可计算出V=396.4m/s。得出的速度虽然有差距但与振动在土壤中传播速度大体相当, 出现误差的原因与光脉冲传播脉冲宽度无法做到较短和最大值算法无法准确确定振动到来的时刻有关。

        

        选取振动速度为400m/s, 采用距离光缆10米的采集数据, 选取中心点为23点其最大差值时刻为Tm=1491, 28点的Tm=1507, d=10米。根据之前推倒的公式进行计算则得出y=14米。与真实的y值存在4米的误差。由于最大值差值法受背向散射光大小影响, 而不同位置的背向散射光成起伏状分布, 无法做到不同距离平均分配。后续需改进光路进一步缩小误差。

    • 0
    • 0
    • 0
    • 50
    • 请登录之后再进行评论

      登录
    • 做任务
    • 实时动态
    • 偏好设置
    • 单栏布局 侧栏位置: